AOE 5244: Optimization Techniques Course Syllabus

Instructor:	Dr. Kyriakos G. Vamvoudakis 226 Randolph Hall Phone: 231-6707 E-mail: <u>kyriakos@vt.edu</u> Web: <u>http://www.dept.aoe.vt.edu/~kyriakos/</u>
Time & Location:	TR 3:30 PM to 4:45 PM NCB Boom 270
Office Hours:	11:00 AM - 12:30 PM Tuesdays & Thursdays or by appointment
Course Web Page:	http://www.dept.aoe.vt.edu/~kyriakos/ and https://canvas.vt.edu/
Required Texts:	F. L. Lewis, D. Vrabie, and V. L. Syrmos. <i>Optimal Control</i> , John Wiley & Sons, 2012 (ISBN: 978-0-470-63349-6) Preliminary version is provided by author in <u>http://www.uta.edu/utari/acs/FL%20books/Lewis%20optimal%20control%203r</u> <u>d%20edition%202012.pdf</u> D. Liberzon, <i>Calculus of variations and optimal control theory: a concise introduction</i> , Princeton University Press, 2012 (ISBN: 978-0-691-15187-8) (good reference on calculus of variations). Preliminary version is provided by author in: http://liberzon.csl.illinois.edu/teaching/cvoc.pdf
Additional Texts:	D. Vrabie, K. G. Vamvoudakis, F. L. Lewis, <i>Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles</i> , Control Engineering Series, IET Press, 2012 (ISBN: 978-1-84919-489-1) (good reference on RL and optimal control) T. Basar, G. J. Olsder, <i>Dynamic noncooperative game theory</i> , Vol. 23. Siam, 1999 (ISBN: 978-0-89871-429-6) (good reference on game theory)
Required Software:	Student Edition of Matlab

Course Description: This course will cover analysis and design techniques in optimal control systems and differential games.

Course Topics:	I. Static and Dynamic Optimization					
	 A. Unconstrained Optimization and Efficient Algorithms, e.g. steepest or gradient descent methods 					
	B. Constrained Optimization with Lagrange Multipliers (First-Order					
	Necessary Conditions) and Second-Order Conditions					
	II. Calculus of Variations					
	A. Motivation Examples					
	B. Hamiltonian Formalism and Mechanics					
	C. First and Second-Order Conditions					
	D. Specification of Performance Indices					
	III. Optimal Control of Discrete-Time Systems					
	A. Solution Concept					
	B. Linear Quadratic Regulator (LQR) and Matrix Equations					

- C. Steady-State Closed-Loop Control
- D. Advanced Topics
- IV. Optimal Control of Continuous-Time Systems
 - A. Solution Concept
 - B. LQR and Matrix Equations
 - C. Steady-State Closed-Loop Control
 - D. Advanced Topics
- V. Extensions of LQR
 - A. Cross Terms in the Cost Functional
 - B. Servo and Tracking Problems
- VI. Final- Time-Free and Constrained Input Control
 - A. Constrained Minimum-Time Problem (Bang-Bang Control)
 - B. Constrained Minimum-Fuel Problem (Bang-Off-Bang Control)
 - C. Constrained Minimum-Energy Problem
- VII. Dynamic Programming
 - A. Bellman's Principle of Optimality
 - B. Continuous versus Discrete-Time
 - C. Hamilton-Jacobi-Bellman (HJB) Equation
 - D. Brief Remarks on Viscosity Solutions
- VIII. Differential Games
 - A. Pontryagin's Principle and Bellman's Equation
 - B. Zero-Sum Games and Hamilton-Jacobi-Isaacs Equation (HJI)
 - C. Non-Zero-Sum Games and Nash Equilibrium
- IX. Advanced Topics
 - A. Reinforcement Learning
 - B. Duality of Optimal Control and Optimal Estimation
 - C. Motion Planning with Randomized Trees and Optimal Control
 - D. Output Feedback
 - E. Limited Bandwidth Optimal Control

Tentative Grading Policy:

Homework 30%

Midterm 35% (Mid-class)

Final Project 35% (Please come talk to me to pick a project that is related to your field of interest.)

Homework Assignments:

- Due at the beginning of the class on the due date. Solutions to the homework will be posted on the web at the time that they are due. Therefore NO LATE HOMEWORK will be accepted.
- Electronic submissions will be accepted before the class starts.
- Late homework will not be accepted without formal documentation of extenuating circumstances (e.g. a note from a Dean, a physician, etc.).

Course Policies: 1. NO CELL PHONES are allowed during lecture. 2. Be on time to class. Tardy is discouraged. 3. No make-up exams/quizzes. If you miss the exam, a zero score will be assigned to the missed exam/quiz. 4. If you miss a class due to personal emergency or medical reasons, please be sure to inform the instructor by e-mail. 5. Homework assignments are to be submitted by the due date. You may discuss homework problems with your classmates, but you are responsible for your own works. 6. After

an assignment grade has been posted online, students must see the instructor within one week if they wish to discuss the assignment and their work.

Principles of Community: Students are expected to be polite and professional when interacting with one another and with the instructor. Abusive or insensitive behavior will not be tolerated. Student conduct is governed by Virginia Tech's Principles of Community: <u>http://www.diversity.vt.edu/principles-of-community/principles.html</u>

Honor System: Graduates of Virginia Tech's engineering program have very high standards of personal and professional integrity. It is the responsibility of Virginia Tech's students and faculty to ensure that this legacy continues. The Undergraduate Honor Code pledge that each member of the university community agrees to abide by states:

"As a Hokie, I will conduct myself with honor and integrity at all times. I will not lie, cheat, or steal, nor will I accept the actions of those who do."

Students enrolled in this course are responsible for abiding by the Honor Code. A student who has doubts about how the Honor Code applies to any assignment is responsible for obtaining specific guidance from the course instructor before submitting the assignment for evaluation. Ignorance of the rules does not exclude any member of the University community from the requirements and expectations of the Honor Code. For additional information visit: https://www.honorsystem.vt.edu/

Academic Support: The instructor will provide assistance through normal protocols, such as office hours, but cannot serve as a private tutor. Virginia Tech has numerous resources to support student achievement. For information about academic support services, please see: http://www.undergraduate.vt.edu/Subpages/aca-supp index SCMS.html

Special Accommodations: Special accommodations can be made for students with disabilities. Please bring any such issues to the instructor's attention *no later than the second week of class*. For information on the types of accommodations that are available see <u>http://www.ssd.vt.edu/</u>

Emergency Preparedness: The Office of Emergency Preparedness has developed the following flyer outlining simple steps to follow when preparing for or responding to an emergency: http://www.emergency.vt.edu/help/resources-help/studentPreparedness.pdf

Tentative Roadmap			Fall 2017 (AOE 5244)	
Number of Lecture	date	day	Торіс	Reading Assignments
			Introduction, Unconstrained and Constrained Optimization	
1	29-Aug	tue		Sections 1.1-1.2 Liberzon and Chapter 1 in Lewis
2	31-Aug	thurs	Unconstrained and Constrained Optimization	Sections 1.1-1.2 Liberzon and Chapter 1 in Lewis
3	5-Sep	tue	Unconstrained and Constrained Optimization	Sections 1.1-1.3 Liberzon and Chapter 1 in Lewis
4	7-Sep	thurs	Calculus of Variations	Chapter 2 in Liberzon
5	12-Sep	tue	Calculus of Variations	Chapter 2 in Liberzon
6	14-Sep	thurs	Calculus of Variations	Chapter 2 in Liberzon
7	19-Sep	tue	Calculus of Variations	Chapter 2 in Liberzon and Section 3.1 in Lewis
8	21-Sep	thurs	Optimal Control of Discrete-Time Systems	Chapter 2 in Lewis
9	26-Sep	tue	Optimal Control of Discrete-Time Systems	Chapter 2 in Lewis
10	28-Sep	thurs	Optimal Control of Discrete-Time Systems	Chapter 2 in Lewis
11	3-Oct	tue	Optimal Control of Discrete-Time Systems	Chapter 2 in Lewis
12	5-Oct	thurs	Optimal Control of Continuous-Time Systems	Chapter 3 in Lewis
13	10-Oct	tue	Optimal Control of Continuous-Time Systems	Chapter 3 in Lewis
14	12-Oct	thurs	Optimal Control of Continuous-Time Systems	Chapter 3 in Lewis
15	17-Oct	tue	Optimal Control of Continuous-Time Systems	Chapter 3 in Lewis
16	19-Oct	thurs	Extensions of LQR	Chapter 4 in Lewis
17	24-Oct	tue	Dynamic Programming	Chapter 6 in Lewis
18	26-Oct	thurs	Dynamic Programming	Chapter 6 in Lewis
19	31-Oct	tue	Midterm Exam in Class	-
20	2-Nov	thurs	Dynamic Programming	Chapter 6 in Lewis
21	7-Nov	tue	Viscosity Solutions for HJB	Chapter 5 in Liberzon
22	9-Nov	thurs	Differential Games	Chapter 10 in Lewis and Section 7.3 in Liberzon
23	14-Nov	tue	Differential Games	Chapter 10 in Lewis and Section 7.3 in Liberzon
24	16-Nov	thurs	Differential Games and Learning	Part 3 in Vrabie and Chapter 11 in Lewis
25	21-Nov	tue	No Lecture/Thanksgiving	-
26	23-Nov	thurs	No Lecture/Thanksgiving	-
27	28-Nov	tue	Advanced Topics	Research Papers
28	30-Nov	thurs	Advanced Topics	Research Papers
29	5-Dec	tue	Advanced Topics	Research Papers
30	7-Dec	thurs	Advanced Topics (Projects are Due)	Research Papers
31	12-Dec	tue	Project Presentations	

These descriptions and timelines are subject to change at the discretion of the Instructor.