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Abstract— In this paper we introduce an online algorithm that 

uses integral reinforcement knowledge for learning the 

continuous-time optimal control solution for nonlinear systems 

with infinite horizon costs and partial knowledge of the system 

dynamics. This algorithm is a data based approach to the solution 

of the Hamilton-Jacobi-Bellman equation and it does not require 

explicit knowledge on the system’s drift dynamics. The adaptive 

algorithm use the structure of policy iteration, and it is 

implemented on an actor/critic structure. Both actor and critic 

neural networks are adapted simultaneously and a persistence of 

excitation condition is required to guarantee convergence of the 

critic to the actual optimal value function. &ovel tuning 

algorithms are given for both critic and actor networks, with 

extra terms in the actor tuning law being required to guarantee 

closed-loop dynamical stability. The convergence to the optimal 

controller is proven, and stability of the system is also 

guaranteed. Simulation example support the theoretical result.  

I. INTRODUCTION 

T the very top in the hierarchy of a complex integrated 

control applications stand the money-making loops that 

require cost effective control solutions. At this level the 

desired control solution is often associated with an optimal 

control problem. Such optimal control policies must satisfy the 

specified system performances while minimizing a structured 

cost index that describes the balance between desired 

performances and available control resources. 

From a mathematical standpoint the solution of the optimal 

control problem is the solution of the underlying Hamilton-

Jacobi-Bellman (HJB) equation. Until recently, due to the 

intractability of this nonlinear differential equation for 

continuous-time (CT) systems, which form the object of 

interest in this paper, only particular solutions were available 

(e.g. for the linear time-invariant case, the HJB becomes the 

Riccati equation). For this reason considerable effort has been 

devoted to developing algorithms which approximately solve 

this equation (e.g. [1], [3], [12]). Far more results are available 

for the solution of the discrete-time HJB equation. Good 

overviews are given in [4], [16]. 

In this paper we use Reinforcement Learning (RL) methods, 

specifically a new Integral Reinforcement Learning (IRL) 

approach, to provide an online learning solution to optimal 

control problem that does not require knowledge of the system 

drift dynamics.  

The algorithm that we introduce herein is conceptually 

based on the Policy Iteration (PI) technique [8]. The PI 

algorithm is an iterative approach to solve the HJB equation 

by constructing a sequence of admissible control policies that 

converges to the optimal control solution. We will provide a 

characterization for an admissible policy. The algorithm starts 

by evaluating the cost of a given initial admissible control 

policy and then uses this information to obtain a new and 

improved control policy, i.e. the new policy that will have a 

lower associated cost compared to the previous control law. 

These two steps of policy evaluation and policy improvement 

are repeated until the policy improvement step no longer 

changes the actual policy, thus convergence to the optimal 

controller is achieved. One must note that the cost can be 

evaluated only in the case of admissible control policies, 

admissibility being a condition for the control policy which is 

used to initialize the algorithm. 

Actor/critic structures based on Value Iteration have been 

introduced and further developed by Werbos [20], [21], [22] 

with the purpose of solving the optimal control problem online 

in real-time. Werbos defined four types of actor-critic 

algorithms based on value iteration, subsumed under the 

concept of Approximate or Adaptive Dynamic Programming 

(ADP) algorithms. Adaptive critics have been described in 

[14] for discrete-time systems and [2], [7], [18], [19] for 

continuous-time systems. 

In the linear CT system case, when quadratic indices are 

considered for the optimal stabilization problem, the HJB 

equation becomes the well known Riccati equation and the 

policy iteration method is in fact Newton’s method [9] which 

requires iterative solutions of Lyapunov equations. In the 

nonlinear systems case, successful application of the PI 

method was limited until [3], where Galerkin spectral 
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approximation methods were used to solve the nonlinear 

Lyapunov equations describing the policy evaluation step in 

the PI algorithm. Such methods are known to be 

computationally intensive and cannot handle control 

constraints.  

The key to solving practically the CT nonlinear Lyapunov 

equations was in the use of neural networks (NN) [1] which 

can be trained to become approximate solutions of these 

equations. In fact the PI algorithm for CT systems can be built 

on an actor/critic structure which involves two neural 

networks: one, the critic NN, is trained to become an 

approximation of the Lyapunov equation solution at the policy 

evaluation step, while the second one is trained to approximate 

an improving policy at the policy improving step.   

Reinforcement learning (RL) is a class of methods used in 
machine learning to methodically modify the actions of an 
agent based on observed responses from its environment ([8], 
[17]).  The RL methods have been developed starting from 
learning mechanisms observed in mammals. Every decision-
making organism interacts with its environment and uses those 
interactions to improve its own actions in order to maximize 
the positive effect of its limited available resources; this in turn 
leads to better survival chances. RL is a means of learning 
optimal behaviors by observing the response from the 
environment to non-optimal control policies. In engineering 
terms, RL refers to the learning approach of an actor or agent 
which modifies its actions, or control policies, based on stimuli 
received in response to its interaction with its environment. 
This learning can be extended along two dimensions: i) nature 
of interaction (competitive or collaborative) and ii) the number 
of decision makers (single or multi agent). 

Advances in RL for continuous-time systems have been 
hampered by the fact that the Bellman equation (Hamiltonian 
equation) for CT systems depends on the full system dynamics.  
In [19] was developed an online PI algorithm for continuous-
time systems which converges to the optimal control solution 
without making explicit use of any knowledge on the internal 
dynamics of the system. The algorithm was based on the idea 
of Integral Reinforcement Learning (IRL), which allows the 
development of a Bellman equation that does not contain the 
system dynamics.  That algorithm used sequential updates of 
the critic (policy evaluation) and actor (policy improvement) 
neural networks (i.e. while one is tuned the other one remains 
constant). 

This paper is concerned with developing approximate 

online solutions, based on the structure of PI, for the infinite 

horizon optimal control problem for continuous-time (CT) 

nonlinear systems.  We present an online integral 

reinforcement algorithm that combines the advantages of [18] 

and [19]. These include simultaneous tuning of both actor and 

critic neural networks [18] (i.e. both neural networks are tuned 

at the same time) and no need for the drift term in the 

dynamics [19].  Simultaneous tuning idea was first introduced 

by [20], [21] and has been the idea of recent papers in the area, 

however in most of these papers the authors either designed 

model-based controllers [6], [18] or used dynamic neural 

networks to identify the nonlinear plant [5]. Our algorithm 

avoids partial knowledge of the plant and uses only two neural 

networks by designing a hybrid controller as in [19].  

The contributions in this paper are i) provide a new online  

continuous time algorithm that converge to the solution of 

HJB and Bellman equation without solving them, ii) partial 

need of dynamics, iii) update actor and critic neural networks 

simultaneously in real time and iv) only two approximators 

(neural networks) are used.  

The paper is organized as follows. Section II provides the 

formulation of the optimal control problem followed by the 

general description of neural network value function 

approximation (VFA). Section III introduces the online 

synchronous integral reinforcement learning algorithm for the 

actor and critic networks based on PI.  Results for 

convergence and stability are given.  Section IV presents a 

simulation example that show the effectiveness of the online 

integral reinforcement learning algorithm. 

II. THE OPTIMAL CONTROL PROBLEM AND THE POLICY 

ITERATION ALGORITHM 

A. Optimal control and the continuous-time HJB equation 

Let the system dynamics be described by the differential 

equation
  

              ( ) ( ( )) ( ( )) ( ( ))x t f x t g x t u x t= +ɺ ; 0(0)x x=        (1) 

with state ( ) nx t ∈ℝ , ( ( )) nf x t ∈ℝ , ( ( )) n mg x t ×∈ℝ  and 

control input ( ) mu t U∈ ⊂ R . We assume 

that (0) 0, (0) 0f g= = , ( ) ( )f x g x u+  is Lipschitz 

continuous on a set 
nΩ ⊆ R  that contains the origin. We 

assume that the dynamical system is stabilizable on Ω , i.e. 

there exists a continuous control function ( )u t U∈  such that 

the system is asymptotically stable on Ω , and that 

( ) ( )f x g x u+  is Lipschitz continuous on Ω . 

Define the infinite horizon integral cost 

  0

0

( ) ( ( ), ( ))V x r x u dτ τ τ
∞

= ∫                                        (2) 

where ( , ) ( ) Tr x u Q x u Ru= +  with ( )Q x  positive definite, i.e. 

0, ( ) 0x Q x∀ ≠ >  and 0 ( ) 0x Q x= ⇒ = , and m mR ×∈R  a 

positive definite matrix.   

Definition 1. [1] (Admissible policy) A control policy 

( )xµ  is defined as admissible with respect to (2) on Ω , 

denoted by ( )µ ∈Ψ Ω , if ( )xµ  is continuous on Ω , 

(0) 0µ = , ( )xµ  stabilizes (1) on Ω  and 0( )V x  is finite 

0x∀ ∈Ω .  

For any admissible control policy ( )µ ∈Ψ Ω , if the 

associated cost function  

              0

0

( ) ( ( ), ( ( )))V x r x x d
µ τ µ τ τ

∞

= ∫                              (3) 

is 1C , then an infinitesimal version of (3)is 



       0 ( , ( )) ( ( ) ( ) ( )), (0) 0T
xr x x V f x g x x Vµ µµ µ= + + =     (4) 

where xV µ  denotes the partial derivative of the value function 

V µ  with respect to x .  (Note that the value function does not 

depend explicitly on time). Equation (4) is a Lyapunov 

equation for nonlinear systems which, given a controller 

( ) ( )xµ ∈Ψ Ω , can be solved for the value function ( )V xµ  

associated with it. Given that ( )xµ  is an admissible control 

policy, if ( )V xµ  satisfies (4), with ( , ( )) 0r x xµ ≥ , then 

( )V xµ  is a Lyapunov function for the system (1) with control 

policy ( )xµ .  

The optimal control problem can now be formulated: Given 

the continuous-time system  (1), the set ( )µ ∈Ψ Ω  of 

admissible control policies and the infinite horizon cost 

functional (2), find an admissible control policy such that the 

cost index (2) associated with the system (1) is minimized.   

Define the Hamiltonian of the problem  

( , , ) ( ( ), ( )) ( ( ( )) ( ( )) ( ))T
x xH x u V r x t u t V f x t g x t u t∇ = +∇ +  (5) 

the optimal cost function *( )V x  satisfies the HJB equation  

                       *

( )
0 min [ ( , , )]x

u
H x u V

∈Ψ Ω
= ∇  (6) 

where x

V
V

x

∂
∇ ≡

∂
is disabused here as a column vector. 

Assuming that the minimum on the right hand side of (6) 

exists and is unique then the optimal control function for the 

given problem is  

                         * 1 *( ) ( )T
xu x R g x V−= − ∇  (7) 

Inserting this optimal control policy in the Hamiltonian we 

obtain the formulation of the HJB equation in terms of *
xV  

   * * 1 * *1
0 ( ) ( ) ( ) ( ) , (0) 0

4

T T T
x x xQ x V f x V g x R g x V V−= +∇ − ∇ ∇ = (8) 

This is a necessary and sufficient condition for the optimal 

value function [11]. For the linear system case, considering a 

quadratic cost functional, the equivalent of this HJB equation 

is the well known Riccati equation. 

In order to find the optimal control solution for the problem 

one only needs to solve the HJB equation (8)for the value 

function and then substitute the solution in (7) to obtain the 

optimal control. However, solving the HJB equation is 

generally difficult as it is a nonlinear differential equation, 

quadratic in the cost function, which also requires complete 

knowledge of the system dynamics (i.e. the system dynamics 

described by the functions ( ), ( )f x g x  need to be known). The 

next section provides the policy iteration algorithm and the 

value function approximation of the critic network. 

B. Policy Iteration  

Policy iteration (PI) is an iterative method of reinforcement 

learning [16] for solving (8), and consists of policy 

improvement based on on (7) and policy evaluation based on 

(4).  

In the actor/critic structure the Critic and the Actor 

functions are approximated by neural networks, and the PI 

algorithm consists in tuning alternatively each of the two 

neural networks. The critic neural network is tuned to evaluate 

the performance of the current control policy. 

 

Policy Iteration Algorithm: 

Step 1. Given policies ( ) ( )i xµ , solve for the value 
( )

( ( ))
i

V x tµ  

using 

       

( )

( )

( ) ( )
0 ( , ( )) ( ) ( ( ) ( ) ( ))

(0) 0

i

i

i T i
xr x x V f x g x x

V

µ

µ

µ µ= + ∇ +

=
  (9) 

Step 2. Update the control policy using 

             
( )( 1)

( )

arg min[ ( , , )]
ii

x
u

H x u Vµ +

∈Ψ Ω
= ∇  (10) 

which explicitly is  

              
( )( 1) 11

2
( ) ( )

ii T
xx R g x Vµ + −= − ∇  (11) 

To ensure convergence of the PI algorithm an initial 

admissible policy (0) ( ( )) ( )x tµ ∈Ψ Ω  is required. It is in fact 

required by the desired completion of the first step in the 

policy iteration: i.e. finding a value associated with that initial 

policy (which needs to be admissible to have a finite value and 

for the nonlinear Lyapunov equation to have a solution). The 

algorithm then converges to the optimal control policy 
* ( )µ ∈Ψ Ω  with corresponding cost *( )V x . Proofs of 

convergence of the PI algorithm have been given in several 

references. See [1], [2], [3], [7], [8], [12], [18], and [19]. 

Policy iteration is a Newton method. In the linear time-

invariant case, it reduces to the Kleinman algorithm [9]for 

solution of the Riccati equation, a familiar algorithm in control 

systems.  Then, (9) become a Lyapunov equation. 

A major problem with this formulation of PI for CT systems 

is that the full system dynamics must be known as both f(x) 

and g(x) appear in the Bellman equation (9). 

C. Value function approximation (VFA) 

A practical method for implementing PI for CT systems is 

presented in this section.  This involves two aspects: value 

function approximation (VFA) and integral reinforcement 

learning (IRL). The critic NN is based on value function 

approximation (VFA). Thus, assume there exist weights 1W  

such that the value ( )V x  is approximated by a neural network 

as 

                             1( ) ( ) ( )TV x W x xφ ε= +  (12) 

where ( ) : n .xφ →R R  is the activation functions vector, . 

the number of neurons in the hidden layer, and ( )xε  the NN 

approximation error. It is known that ( )xε  is bounded by a 

constant on a compact set.  Select the activation functions to 

provide a complete basis set such that ( )V x  and its derivative 



                                 1
TV
W

x x

ε
φ

∂ ∂
= ∇ +

∂ ∂
 (13) 

are uniformly approximated.  According to the Weierstrass 

higher-order approximation theorem [1], such a basis exists if 

( )V x  is sufficiently smooth. This means that, as the number 

of hidden-layer neurons . → ∞ , the approximation error 

0ε →  uniformly.  

D. Integral Reinforcement Learning 

The PI algorithm given above requires full system dynamics, 
since both f(x) and g(x) appear in the Bellman equation (9).  In 
order to find an equivalent formulation of the Bellman equation 
that does not involve the dynamics, we note that for any time 

0t  and time interval T the value function (3)  satisfies 

             

0

0 0

0

( ) ( ( ), ( ( ))) ( )

t

t t T

t T

V x r x x d V xµ µτ µ τ τ −

−

= +∫  (14) 

In [19] it is shown that (14) and (9) are equivalent, i.e., they 
both have the same solution.  Therefore, (14) can be seen as a 
Bellman equation for CT systems.  Note that this form does not 
involve the system dynamics.  We call this the integral 
reinforcement learning (IRL) form of the Bellman equation. 

Therefore, by using a critic NN for VFA, the Bellman error 
based on (14) becomes [19] 

( ) 1 1( ) ( ( )) ( ( ))

t

T T T
B

t T

Q x R d W x t W x t Tµ µ τ φ φ ε
−

+ + − − =∫  (15) 

We define the integral reinforcement as  

  ( )( )

t

T

t T

p Q x R dµ µ τ
−

= +∫                                 (16) 

Now (15) can be written as  

  1 ( ( ))T
B p W x tε φ− = ∆                           (17) 

where ( ( )) ( ( )) ( ( ))x t x t x t Tφ φ φ∆ ≡ − − . 

Under the Lipschitz assumption on the dynamics, this 

residual error is bounded on a compact set.  Moreover, in [1] it 

has been shown that, under certain assumptions, as the number 

of hidden layer neurons . → ∞ , one has 0Bε → . 

III. ONLINE INTEGRAL REINFORCEMENT LEARNING 

ALGORITHM WITH SYNCHRONOUS TUNING OF ACTOR AND 

CRITIC NEURAL NETWORKS 

Standard PI algorithms for CT systems are offline methods 

that require complete knowledge on the system dynamics to 

obtain the solution (i.e. the functions ( ), ( )f x g x  in (1) need to 

be known). In order to change the offline character of PI for 

CT systems, and thus make it consistent with online learning 

mechanisms in the mammal brain, we present an adaptive 

learning algorithm that uses simultaneous continuous-time 

tuning for the actor and critic neural networks and does not 

need the drift term ( )f x  in the dynamics.  We term this online 

integral reinforcement learning algorithm. 

A. Critic .. and Bellman equation solution 

The weights of the critic NN, 1W , which solve (15) are 

unknown. Then the output of the critic neural network is  

                                 1
ˆ ˆ( ) ( )TV x W xφ=  (18) 

where 1Ŵ  are the current known values of the critic NN 

weights.  Recall that ( ) : n .xφ →R R  is the activation 

functions vector, with . the number of neurons in the hidden 

layer. The approximate Bellman error is then 

( ) 1 1 1
ˆ ˆ( ) ( ( )) ( ( ))

t

T T T

t T

Q x u Ru d W x t W x t T eτ φ φ
−

+ + − − =∫  (19)

which according to (16) can be written as  

1 1
ˆ ( ( ))TW x t e pφ∆ = −  (20) 

It is desired to select 1Ŵ  to minimize the squared residual 

error 

                                        1
1 1 12

TE e e=                              (21) 

Then 1 1
ˆ ( )W t W→ .  We select the tuning law for the critic 

weights as the normalized gradient descent algorithm  

      

( )
1 1 2

( ( ))ˆ

1 ( ( )) ( ( ))

T

T

x t
W a

x t x t

φ

φ φ

∆
= −

+ ∆ ∆

ɺ
 

          ( ) 1
ˆ[ ( ) ( ( )) ]

t

T T

t T

Q x u Ru d x t Wτ φ
−

+ + ∆∫  (22)                                           

Note that the data required in this tuning algorithm at each 

time are ( )( ), ( )t p tφ∆ . 

Define the critic weight estimation error 1 1 1
ˆW W W= −ɶ  and 

substitute (15) in (22) and, with the notation 

( ) ( ) / ( ( ) ( ) 1)t t t tφ φ φ φΤ∆ = ∆ ∆ ∆ + and 1 ( ) ( )T
sm t tφ φ= + ∆ ∆ , 

we obtain the dynamics of the critic weight estimation error as 

                   1 1 1 1( ) ( ) ( ) B

s

W a t t W a t
m

ε
φ φ φΤ= − ∆ ∆ + ∆ɺɶ ɶ  (23) 

Though it is traditional to use critic tuning algorithms of the 

form (22), it is not generally understood when convergence of 

the critic weights can be guaranteed. In this paper, we address 

this issue in a formal manner.  To guarantee convergence of 

1Ŵ  to 1W , the next Persistence of Excitation (PE) assumption 

is required. 

&ote that:  

      ( ( )) ( ) ( )

t t

t T t T

x t x xd f gu dφ φ τ φ τ
− −

∆ = ∇ = ∇ +∫ ∫ɺ            (24) 

It is obvious to see from (20) that the regression vector 

( )tφ∆ must be persistently exciting to solve for 1Ŵ in a least 

squares sense.  

Persistence of Excitation (PE) Assumption.  Let the 



signal ( )tφ∆
 
be persistently exciting over the interval 

[ , ]t T t− , i.e. there exist constants 1 0β > , 2 0β > , 0Τ >  

such that, for all t, 

                 1 0 2( ) ( )

t

t T

S dβ φ τ φ τ τ βΤ

−

Ι ≤ ≡ ∆ ∆ ≤ Ι∫  (25) 

Remark 1. Note that, as . → ∞ , 0Bε →  uniformly [1].  

B. Action .. and online adaptive optimal control 

The policy improvement step in PI is given by substituting 

(13)into (7)as 

                      11
12

( ) ( )T Tu x R g x Wφ−= − ∇             (26) 

with critic weights 1W  unknown.  Therefore, define the control 

policy in the form of an action neural network which computes 

the control input in the structured form 

                         11
2 22

ˆ( ) ( )T Tu x R g x Wφ−= − ∇  (27) 

where 2Ŵ  denotes the current known values of the actor NN 

weights. 

Based on (8) and (15), define the approximate HJB equation  

11 1 1

1
( ) ( ) ( ) ( ( ))

4

t

T T
HJB

t

Q x W D x W x d W x tε τ φ
−Τ

 
− − + = ∆ 

 ∫ (28) 

with the notation 1
1( ) ( ) ( ) ( ) ( )T TD x x g x R g x xφ φ−= ∇ ∇ , where 

1W denotes the ideal unknown weights of the critic and actor 

neural networks which solve the HJB. 

We now present the main Theorems, which provide the 

tuning laws for the actor and critic neural networks that 

guarantee convergence to the optimal controller along with 

closed-loop stability.  The next notion of practical stability is 

needed. 

Definition 2. [10] (UUB) A time signal ( )tζ is said to be 

uniformly ultimately bounded (UUB) if there exists a compact 

set nS ⊂ ℝ so that for all (0) Sζ ∈ there exists a bound B and a 

time ( , (0))T B ζ  such that ( )t Bζ ≤  for all 0 .t t T≥ +    

Theorem 1. Let tuning for the critic NN be provided by 

     
( )

1 1 2

11 2 2

( ( ))ˆ

1 ( ( )) ( ( ))

1ˆ ˆ ˆ( ( )) ( )
4

T

T

t

T T

t T

x t
W a

x t x t

x t W Q x W D W d

φ

φ φ

φ τ
−

∆
= −

+ ∆ ∆

   ∆ + +    
∫

ɺ

 (29) 

where 2( ( )) ( )

t

t T

x t f gu dφ φ τ
−

∆ = ∇ +∫  and assume that ( )tφ∆
 

is persistently exciting (which means 2u is persistently 

exciting). Let the actor NN be tuned as 

  

( )

( )

2 2 2 2 1 1

1
12 2 14 2

ˆ ˆ ˆ( ( ))

( ( ))ˆ ˆ( )

1 ( ( )) ( ( ))

T

T

T

W a F W F x t W

x t
a D x W W

x t x t

φ

φ

φ φ

= − − ∆

∆
−

+ ∆ ∆

ɺ

 (30) 

Then the closed-loop system state is UUB, the critic parameter 

error 1 1 1
ˆW W W= −ɶ  and the actor parameter error 2 1 2

ˆW W W= −ɶ  

are UUB. 

Proof: 

The convergence proof is based on Lyapunov analysis. For 

space reasons we will present the details of this proof in a 

future paper.  

 ■ 

Theorem 2. Optimal solution. Suppose the hypotheses of 

Theorem 1 hold. Then:  

a. 1
ˆˆ( , , )H u W x ≡   

  ( ) 1 1
ˆ ˆˆ ˆ( ) ( ( )) ( ( ))

t

T T T
HJB

t T

Q x u Ru d W x t W x t Tε τ φ φ
−

+ − + − −∫  is 

UUB, where 11
12

ˆˆ ( ) ( )T Tu R g x x Wφ−= − ∇  .      

 That is, 1Ŵ  converge to the approximate HJB solution. 

b. 2
ˆ ( )u x  converges to the optimal solution, where                          

11
2 22

ˆˆ ( ) ( )T Tu R g x x Wφ−= − ∇ . 

Proof:  

For space reasons we will present the details of this proof in 

a future paper.  

 ■ 

Remark 2. The positive tuning parameters 1F , 2F are selected 

appropriately to ensure stability. 

IV. SIMULATION RESULTS 

To support the new synchronous online integral 

reinforcement learning algorithm for CT systems, we offer a 

simulation example of a nonlinear system.  We observe 

convergence to the actual optimal value function and control. 

In these simulations, exponentially decreasing noise is added 

to the control inputs to ensure PE until convergence is 

obtained. 

Consider the following affine in control input nonlinear 

system, with a quadratic cost constructed as in [13] 

                2( ) ( ) ,x f x g x u x R= + ∈ɺ  

where 

  

1 2

2
3 21 3

1 2 2
2

1 1

3
1 1

( )
cos(2 ) 2

0
 ( ) ,

cos(2

0.25 )

) 2

(

x x

f x
x x

g x
x x

x
x x x

x

− + 
 

=  + +− − 
 

 
=  

+ +

−

 

+
 

One selects 
1 0

, 1
0 1

Q R
 

= = 
 

and 0.01T = . 



The optimal value function is 
* 4 2

1 2

1 1
( )

4 2
V x x x= +  

the optimal control signal is 

 * 31
1 1 22

( ) (cos(2 ) 2)u x x x x= − + +  

One selects the critic NN vector activation function as 

 2 2 4 4

1 2 1 2
( ) [         ]x x x x xφ =  

Figure 1 shows the critic parameters, denoted by 

  1 1 2 3 4
ˆ [ ]Tc c c cW W W W W=  

After the simulation by using the integral reinforcement 

learning algorithm we have 

1 2
ˆ ˆ( ) ( ) [0.0033    0.4967    0.2405    0.0153]T

f f
W t W t= =  

The actor NN is given by 

3
1 11

2 232 3
1 1 2 2

0 2 0 4 0 ˆˆ ( ) ( )
cos(2 ) 2 0 2 0 4

T

f

x x
u x W t

x x x x

  
=−   

+ +     
 

The evolution of the system states is presented in Figure 2.  

One can see that after 80s convergence of the NN weights in 

both critic and actor has occurred.  This shows that the probing 

noise effectively guaranteed the PE condition. 

 
Fig. 1. Convergence of the critic parameters to the parameters of the 

optimal critic. 

Fig. 4. Evolution of the system states for the duration of the experiment. 

V. CONCLUSION 

In this paper we have proposed a new adaptive algorithm 

which solves the continuous-time optimal control problem for 

affine in the inputs nonlinear systems. The importance of this 

algorithm relies on the partial need of dynamics, only ( )g x is 

needed, the simultaneous tuning of the actor and critic neural 

networks and the convergence to HJB and Bellman equation 

solution without solving these equations. 
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