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Abstract—This paper presents some new adaptive con-
trol structures based on reinforcement learning for com-
puting online the solutions to optimal tracking control
problems and multi-player differential games. We design
a new family of adaptive controllers that converge in real
time to optimal control and game theoretic solutions by
using data measured along the system trajectories. This
is a new approach to data-driven optimization. Integral
reinforcement learning is used to develop policy iteration
based algorithms that find optimal solutions online and
do not require full knowledge of the system dynamics.
A new experience replay technique is given that uses
past data for present learning and significantly speeds up
convergence. A new method of off-policy learning allows
learning of optimal solutions without knowing any dynamic
information. New algorithm will be presented for solving
online the non zero-sum multi-player games for continuous-
time systems. Each player maintains two adaptive learning
structures, a critic network and an actor network. The
result is an adaptive control system that learns based on
the interplay of agents in a game, to deliver true online
gaming behavior.

I. Introduction

Optimal feedback control design has been responsible
for much of the successful performance of engineered
systems in aerospace, manufacturing, industrial pro-
cesses, vehicles, ships, robotics, and elsewhere since the
1960s. However, it is difficult to perform optimal designs
for nonlinear process systems since they rely on off-
line solutions to complicated Hamilton-Jacobi-Bellman
(HJB) equations. Moreover, optimal design generally
requires that the full system dynamics be known, which
is seldom the case in practical applications [1].
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Reinforcement learning (RL) and adative dynamic
programming [2]–[7] methods have been successfully
applied to find the solution to the HJB online without re-
quiring complete knowledge about the system dynamics
for both continuous-time (CT) and discrete-time (DT)
systems [8]–[14]. Efficient off-policy RL algorithms
were first presented in [15], [16] that do not need any
knowledge about the system dynamics to find the solu-
tion to the HJB equation. Most existing RL algorithms
are desigend for solving optimal regulation problems. In
most real world applications, it is desired the outputs or
states of the system track a desired reference trajectory.
In [17]–[19], RL algorithms are presented to find the
online solution to the optimal tracking problem for CT
systems. The online actor-critic approximators have been
introduced and further developed by Werbos [20] to
implement the presented RL algorithms for nonlinear
systems. The critic approximator estimates the value
function and is updated to minimize the Bellman equa-
tion error. The actor approximator represents a control
policy and is updated to minimize the value function.

A persistence of excitation (PE) condition is required
to be satisfied to guaranttee convergence to a near
optimal solution. However, traditional PE conditions are
often difficult or impossible to check online. Also, due
to the requirement for the PE condition, the existing RL-
based algorithms for CT systems are sample inefficient,
that is, they require many samples in order to learn the
optimal policy. In order to reduce sample complexity
and use available data more effectively, the experience
replay technique has been proposed in the context of
RL for [21], [22]. In this technique, a number of recent
samples are stored in a database and they are presented
repeatedly to the underlying RL algorithm.

In this paper, we present online adaptive controllers
based on policy iteration (PI) algorithms, namely the on-
policy and off-policy integral RL (IRL), that converge to
the optimal solution of HJB equation arising in optimal
tracking control problems without requiring any knowl-
edge about the system dynamics or reference trajectory.
Moreover, the online solution of the multiplayer non



zero-sum games using on-policy IRL algorithm is con-
sidered. The algorithms are implemented using online
actor-critic structure and experience replay technique.

II. Optimal Tracking Control Problem

Consider the nonlinear time-invariant system given by,

9xptq “ f pxptqq ` gpxptqquptq, (1)

where x P Rn is a measurable state vector, uptq P Rm is
the control input, f pxq P Rn is the drift dynamics and
gpxq P Rnˆm is the input dynamics. It is assumed that
f p0q “ 0 and f pxq ` gpxqu is locally Lipschitz and the
system is stabilizable.

The goal of the optimal tracking control problem is to
design the optimal control policy u‹ptq so as to make
the system (1) track a desired trajectory xdptq in an
optimal manner by minimizing a predefined performance
function.

The desired trajectory is generated by command gen-
erator model

9xdptq “ hdpxdptqq, (2)

where xdptq P Rn.
Define the tracking error as

eptq “ xptq ´ xdptq.

A. Standard solution to the optimal tracking problem

In the tracking problem, the control input consists
of two terms: a feedforward term which guarantees
perfect tracking and a feedback term which stabilizes
the system dynamics. Most solutions to the nonlinear
optimal tracking problems find the feedforward term
using the dynamics inversion concept and the feedback
term by solving an HJB equation.

The feedforward term can be obtained using dynamics
inversion concept as

udptq “ gpxdq
´1 p 9xd ´ f pxdqq.

The feedback term is designed in an optimal manner by
minimizing the following performance function

Jpeptq, ueptqq “
ż 8

t

`

epτqT Qe epτq ` ue
T Re ue

˘

dτ,

where Qe ľ 0, Re “ RT
e ą 0. The feedback term of

the control input is found by solving the stationarity
condition BJpe, ueq{Bue “ 0 as

u‹e ptq “ ´
1
2

R´1
e gT BJpeptqq

Beptq
.

Then, the optimal control input including both feed-
back and feedforward terms is

u‹ptq “ udptq ` u‹e ptq.

The RL algorithms can be used to find the feedback
part of the control input u‹e ptq without requiring complete
knowledge of the system dynamics. However, obtaining
the feedforward part of the control input udptq needs
complete knowledge of the system dynamics and the ref-
erence trajectory dynamics, which cancels the usefulness
of the RL techniques.

B. New formulation to find the solution of the optimal
tracking problem

In this section, a new formulation is developed that
gives both feedback and feedforward parts of the control
input simultaneously and thus enables RL algorithms to
solve the tracking problems without requiring complete
knowledge of the system dynamics [17], [18].

The augmented system can be constructed in terms of
the tracking error eptq and the reference trajectory xdptq
as

9Xptq “
„

9eptq
9xdptq



“

„

f peptq ` xdptqq ´ hdpxdptqq
hdpxdptqq



`

„

gpeptq ` xdptqq
0



uptq ” FpXptqq `GpXptqquptq,

(3)

where the augmented state is

Xptq “
„

eptq
xdptq



.

The performance function is defined as

Jpxptq, xdptq, uptqq “

8
ż

t

e´η pτ´tqˆ

`

pxpτq ´ xdpτqq
T Q pxpτq ´ xdpτqq ` uT pτqR upτq

˘

dτ,

where Q ľ 0 and R “ RT ą 0. The value function in
terms of the states of the augmented system is written
as

VpXptqq “

8
ż

t

e´η pτ´tqrpX, uq dτ

“

8
ż

t

e´η pτ´tq`XT pτqQT Xpτq ` uT pτqR upτq
˘

dτ, (4)

where QT “

„

Q 0
0 0



and η ě 0 is the discount factor.



This formulation converts the optimal tracking prob-
lem to solving the optimal regulation problem by mini-
mizing the value function (4) subject to the augmented
system (3) which gives both feedback and feedforward
parts of the control input simultaneously.

A differential equivalent to this is the Bellman equa-
tion,

rpX, uq ´ ηV ` ∇VT
X

`

FpXq `GpXq u
˘

“ 0,Vp0q “ 0,
(5)

and the Hamiltonian is given by,

HpX, u,∇VXq “ rpX, uq ´ ηV ` ∇VT
X

`

FpXq `GpXq u
˘

.

The optimal value is given by the Bellman optimality
equation

rpX, u‹q ´ ηV‹ ` ∇V‹T
X

`

FpXq `GpXqu‹
˘

“ 0, (6)

which is just the CT HJB tracking equation. The optimal
control is then given as

u‹ptq “ arg min
u

`

rpX, u‹q ´ ηV‹ ` ∇V‹T
X

`

FpXq `GpXqu‹
˘˘

“ ´
1
2

R´1GT pXq∇V‹X . (7)

For the linear system case, considering a quadratic
value function, the equivalent of the HJB equation is the
well known algebraic Riccati equation (ARE). Solving
the HJB equation is generally difficult as it is a nonlin-
ear differential equation, quadratic in the cost function,
which also requires complete knowledge of the system
dynamics. The following on-policy and off-policy IRL
algorithms are presented to approximate the solution of
the HJB tracking equation by iterating on the Bellman
equation.

III. On-policy Integral Reinforcement Learning

An equivalent formulation of the Bellman equation (5)
that does not involve the dynamics is found to be,

VpXptqq “
ż t`T

t
e´η pτ´tq`XT pτqQT pXpτqq`

uT pτqR upτq
˘

dτ` e´ηT VpXpt ` T qq.

for any time t ě 0 and time interval T ą 0. This
equation is called the IRL Bellman equation [8], [23].
The following offline PI algorithm can be implemented
by iterating on the above IRL Bellman equation and
updating the control policy.

Algorithm 1: on-policy IRL algorithm to find the
solution of HJB

1: procedure
2: Given admissible policy u0

3: for j “ 0, 1, . . . given u j and solve for the value
V j`1pXq using Bellman equation

V j`1pXptqq “
ż t`T

t
e´η pτ´tq

`

XT pτqQT Xpτq

` uT
j pτqRu jpτq

˘

dτ` e´ηT V j`1pXpt ` Tqq,

on convergence, set V j`1pXq “ V jpXq
4: Update the control policy u j`1ptq using

u j`1ptq “ ´
1
2

R´1GT pXqp∇VXq j`1.

5: go to 3
6: end procedure

A. Synchronous actor-critic structure to implement on-
policy IRL algorithm

In this section, an online solution to the HJB tracking
equation is presented which only requires partial knowl-
edge about the system dynamics. The learning structure
uses the value function approximation with two neural
networks (NNs), namely an actor and a critic. Instead
of sequentially updating the critic and actor NNs, as in
Algorithm 1, both are updated simultaneously in real
time. We call this synchronous online PI.

Assume that the value function is a smooth function,
there exists a single-layer NN such that the VpXq can be
uniformly approximated as

VpXq “ WT
1 φ1pXq ` εpXq,@X.

where φ1pXq : Rn Ñ RN is the basis function vector,
N is the number of basis functions, and εpXq is the
approximation error.

The wights of critic NN, W1 , are unknown. Then, it
is approximated in real time as

V̂pXq “ ŴT
c φ1pXq, @X,

where Ŵc are the current estimated values of the ideal
critic approximator weights W1. Therefore, the IRL
tracking Bellman equation becomes

eB “ ŴT
c ∆φ1ptq `

ż t

t´T
e´ηpτ´t`Tq`XT QT X ` ûT Rû

˘

dτ,

where ∆φ1ptq “ e´ηTφ1ptq ´ φ1pt ´ T q and eB P R
n is

temporal difference (TD) error after using current critic
approximator weights and û is given by,

ûpXq “ ´
1
2

R´1GT pXq
Bφ1

BX

T

Ŵu,

where Ŵu is the current estimated value of the optimal
actor weight.

The critic NN weights are updated to minimize EB “
1
2 e2

B.



The tuning laws for the critic weights are selected as
the gradient descent algorithm, that is

9̂Wc “ ´αc
∆φ1ptq

`

∆φ1ptqT∆φ1ptq ` 1
˘2 eB,

where αc ą 0 is the learning rate. The weights for the
actor Ŵu need to be picked in order to guarantee closed-
loop stability. Hence one has,

9̂Wu “ ´αu
`

pF2Ŵu ´ F1∆φ1ptqT Ŵcq ´
1
4
p
Bφ1

BX
GpXqˆ

R´1GpXqT
Bφ1

BX

T

qŴu
` ∆φ1ptqT
`

∆φ1ptqT∆φ1ptqq ` 1
˘2

˘

Ŵc
˘

,

where αu ą 0 is a tuning gain and F1, F2 ą 0 are user
defined positive definite matrices picked appropriately
for stability.

B. Tuning the weights of the critic NN using experience
replay learning technique

To speed up and obtain an easy-to-check condition
for the convergence of the IRL algorithm, the recent
transition samples are stored and repeatedly presented to
the gradient-based update rule. This is a gradient-descent
algorithm that not only minimizes the instantaneous
TD error, but also minimizes the TD errors for the
stored transition samples [24], [25]. The samples are
stored in a history stack. To collect data in the history
stack, consider ∆φ1pt jq as evaluated values of ∆φ1 at the
recorded time t j. Then, define the Bellman equation error
(TD error) at the recorded time t j using the current critic
weights estimation Ŵc as

peBq j “ŴT
c ∆φ1pt jq

`

ż t j

t j´T
eηpτ´t j`Tq`XT QT X ` ûT Rû

˘

dτ (8)

The proposed novel experience replay based gradient-
decent algorithm for the critic NN is now given as

9̂Wc “´ αc
∆φ1ptq

`

∆φ1ptqT∆φ1ptq ` 1
˘2 eB

´ αc

l
ÿ

j“1

∆φ1pt jq
`

∆φ1pt jq
T∆φ1pt jq ` 1

˘2 peBq j

IV. Off-policy Integral Reinforcement Learning

In order to develop the off-policy IRL algorithm, the
system dynamics (3) is rewritten as [16], [26]

9Xptq “ FpXptqq `GpXptqq u jptq `GpXptqq puptq ´ u jptqq,
(9)

where u jptq is the policy to be updated. By contrast,
uptq is the behavior policy that are actually applied to
the system dynamics to generate the data. Differentiating
V jpXq along with the system dynamics (9) and using
u j`1ptq “ ´ 1

2 R´1GT pXqp∇VXq j gives

9V j “ p∇VX
T q jpF `G u jq ` p∇VX

T q jGpu´ uiq “ ηV j

´ XT QT X ´ u j
T R u j ´ 2 u j`1

T R pu´ u jq. (10)

Multiplying both sides of (10) by e´ηpτ´tq and inte-
grating from both sides yields the following off-policy
IRL Bellman equation

e´ηT V jpXpt ` T qq ´ V jpXptqq “
ż t`T

t
e´ηpτ´tqp´XT QT X ´ u j

T R u jq dτ`
ż t`T

t
e´ηpτ´tqp´2 u j`1

T R pu´ u jqq dτ. (11)

Note that for a fixed control policy u (the policy
which is applied to the system), (11) can be solved
for both value function V j and updated policy u j`1,
simultaneously. It is shown in [26] that the off-policy
IRL equation (11) gives the same solution for the value
function as the HJB equation (6) and the same updated
control policy as (7).

The following algorithm uses the off-policy tracking
Bellman equation (11) to iteratively solve the HJB equa-
tion (6) without requiring any knowledge of the system
dynamics.

Algorithm 2: off-policy IRL algorithm to find the
solution of HJB

1: procedure
2: Given admissible policy uptq
3: for j “ 0, 1, . . . given u j and solve for the value V j

and u j`1 using off-policy Bellman equation

e´ηT V jpXpt ` Tqq ´ V jpXptqq “
ż t`T

t
e´η pτ´tq

`

´ QpXq ´ uT
j Ru j ´ 2 u j`1

T R pu´ u jq
˘

dτ,

on convergence, set V j`1 “ V j
4: go to 3
5: end procedure

To implement off-policy IRL Algorithm 2, the actor-
critic structure is used to approximate the value function
and control policy [16].

V. Non Zero-sum Games

This section presents the formulation of N-player
games for nonlinear systems. RL is used to find the Nash
equilibrium of non-cooperative games online in real time
using measured data.



Consider the N-player nonlinear time-invariant differ-
ential game,

9xptq “ f pxptqq `
N
ÿ

j“1

g jpxptqqu jptq,

where x P Rn is a measurable state vector, u jptq P Rm j

are the control inputs, f pxq P Rn, is the drift dynamics,
g jpxq P Rnˆm j is the input dynamics. It is assumed that
f p0q “ 0 and f pxq `

řN
j“1 g jpxqu j is locally Lipschitz

and that the system is stabilizable.
The performance function associated with each player

is given by,

Jipxp0q, u1, u2, ¨ ¨ ¨ , uNq “

ż 8

0

`

ripx, u1, ¨ ¨ ¨ , uNq
˘

dt

”

ż 8

0

`

Qipxq `
N
ÿ

j“1

uT
j Ri ju j

˘

dt, @i P N ,

where Qip¨q ľ 0 is generally nonlinear and Rii ą 0,@i P
N , Ri j ľ 0, @ j , i P N are symmetric matrices and
N :“ t1, 2, ¨ ¨ ¨ ,Nu.

The value can be defined as,

Vipx, u1, u2, ¨ ¨ ¨ , uNq “
ż 8

t

`

ripx, u1, ¨ ¨ ¨ , uNq
˘

dτ, @i P N ,@x, u1, u2, ¨ ¨ ¨ , uN .

The Bellman equation for each player is given as,

ripx, u1, ¨ ¨ ¨ , uNq ` ∇pVT
x qi

`

f pxq `
N
ÿ

j“1

g jpxqu j
˘

“ 0,

Vip0q “ 0,@i P N .

The Hamiltonian functions is defined as,

Hipx, u1, ¨ ¨ ¨ , uN ,∇pVT
x qiq “ ripx, u1, ¨ ¨ ¨ , uNq ` ∇pVT

x qi

`

f pxq `
N
ÿ

j“1

g jpxqu j
˘

,@i P N .

The associated feedback control policies are given by,

u‹i “ arg min
ui

Hipx, u1, ¨ ¨ ¨ , uN ,∇pV‹T
x qiq

“ ´
1
2

R´1
ii gT

i pxq∇pVxqi,@i P N .

After substituting the feedback control policies into
the Hamiltonian one has the coupled HJ equations,

0 “ Qipxq `
1
4

N
ÿ

j“1

∇pVT
x q j g jpxqR´T

j j Ri jR´1
j j gT

j pxq∇pVxq j

` ∇pVT
x qi

`

f pxq ´
1
2

N
ÿ

j“1

g jpxqR´1
j j gT

j pxq∇pVxq j Bx
˘

,@i P N .

(12)

To approximate the solution to the coupled HJ equa-
tions, a PI algorithm is now developed as follows by
iterating on the Bellman equation.

Algorithm 3: PI for Regulation in Non-Zero Sum
Games

1: procedure
2: Given N-tuple of admissible policies µk

i p0q, @i P N
3: while }Vµpkq

i ´ Vµpk´1q

i } ľ εiac, @i P N do
4: Solve for the N-tuple of costs Vk

i pxq using the
coupled Bellman equations

Qipxq `
BVk

i

Bx

T
`

f pxq `
N
ÿ

i“1

gipxqµk
i

˘

` µk
i

T
Riiµ

k
i

`

N
ÿ

j“1

µk
j
T

Ri jµ
k
j “ 0,Vµk

i p0q “ 0.

5: Update the N-tuple of control policies µk`1
i , @i P N

using

µk`1
i “ ´

1
2

R´1
ii gT

i pxq
BVk

i

Bx

T

.

6: k “ k` 1
7: end while
8: end procedure

The PI Algorithm 3 requires complete knowledge of
the system dynamics. To obviate this requirement, IRL
can be used as follows. An equivalent formulation of the
coupled IRL Bellman equation that does not involve the
dynamics is given as,

Vipxpt ´ T qq “
ż t

t´T
ripxpτq, u1pτq, ¨ ¨ ¨ , uNpτqqdτ

` Vipxptqq, @i P N ,

for any time t ě 0 and time interval T ą 0.
Let the value function for each player be approximated

as

V̂ipxq “ ŴT
icφipxq, @x, i P N .

By using a similar procedure as Section III, the update
laws can be rewritten as,

9Wic “ ´αi
∆φiptq

`

∆φiptqqT∆φiptq ` 1
˘2

`

∆φiptqT Ŵic`

ż t

t´T

`

Qipxq ` ûT
i Riiûi `

N
ÿ

j“1

ûT
j Ri jû j

˘

dτ
˘

,@i P N ,

and,
9̂Wiu “ ´αiu

`

pFiŴiu´

Li∆φiptqT Ŵicq ´
1
4

N
ÿ

j“1

p
Bφi

Bx
gipxqR´T

ii Ri jR´1
ii gipxqT

Bφi

Bx

T

q

Ŵiu
∆φiptqT

`

∆φiptqT∆φiptq ` 1
˘2 Ŵ jc

˘

, @i P N ,



respectively with ∆φiptq :“ φiptq ´ φipt ´ T q.
A model-free learning algorithm for non-zero sum

Nash games has been investigated in [27]. System iden-
tification is used in [28] to avoid knowing the complete
knowledge of the system dynamics.

VI. Conclusion

In this paper, we have presented the online solution
to optimal tracking control of nonlinear continuous-time
systems and multi-player differential games using RL
algorithms. The proposed algorithms use the measured
data of the system to find the optimal solution without
requiring any knowledge about the system dynamics
or reference trajectory. The future work is to extend
presented results to control of distributed multi-agent
systems with nonlinear dynamics. Moreover, deep learn-
ing can be integrated with the presented results to deal
with large scale systems with a huge amount of data.
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